

555 Oak Street East North Bay, Ontario P1B 8L3 555, rue Oak Est North Bay (Ontario) P1B 8L3

Tel: 1-800-363-7512 www.ontarionorthland.ca

November 17, 2025

Addendum No. 01

File Reference Number: RFP 2025 093

Title: Engineering Services for Truck Shop Expansion

**RE: Clarifications/Questions** 

#### **QUESTIONS/CLARIFICATIONS:**

**Item 1:** Does the ONTC have any site servicing records that they can share?

**Answer:** ONTC doesn't have much for records.

**Item 2:** Please confirm if a subsurface utility investigation will be required.

Answer: ONTC will provide locates.

**Item 3:** Will the ONTC be providing a topographic survey or is the proponent required to complete this?

**Answer:** Please refer to the Topographic Surveys attached at the end of this Addendum at Appendix A.

**Item 4:** Will the ONTC be providing design and specifications for the track design or is the proponent required to complete this?

**Answer:** Please refer to ONTC's Track Specifications attached at the end of this Addendum at Appendix B.

Item 5: Would it be possible to obtain the pre-engineered building drawings?

**Answer:** The existing building drawings are provided in the RFP at Appendix

**Item 6:** Are we to investigate the entire structure and make as-built drawings of the existing structure? Or are we to tie in the new structure with the existing

**Answer:** According to our Building Condition Assessment, the existing structure is in good condition. The intent is to tie the new structure into the existing.

**Item 7:** What is the height of the new addition?

**Answer:** Match the existing building height that is indicated in the original drawing set, elevation - drawing 4 (Page 4) of the RFP.

**Item 8:** Is the locomotive addition to be included in this proposal – if says future – there will be snow loading on the existing pre-Eng. Building?

**Answer:** A conceptual design shall be included for the locomotive addition only. This will be used budgetary purposes. Provide a summary and quote items if additional engineering services are required on the existing building for the snow loading.

**Item 9:** Are we responsible for Site Plan Approval (SPA) process, specifically providing the photometric design for the outdoor lighting?

**Answer:** No, ONTC wouldn't be concerned about this since the outdoor building lighting will be at the back of the building and away from the local city roadways and streets.

**Item 10:** Will the electrical engineer be responsible for coordinating the power upgrade with the local utility supplier, or will this coordination be handled by others?

**Answer:** The electrical engineer shall coordinate the power upgrade with the local utility supplier, and this shall be added to the Contract Administration Fees.

**Item 11:** In lieu of a Subject Matter Expert, would ONTC consider the prime consultant preparing a performance specification for the competitive bidding of turnkey spray booth and blast booth? It will offer a superior product, better service, and a more competitive pricing.

**Answer:** Yes, ONTC will consider this if the consultant can provide a turnkey solution for the spray and blast booths and can clearly indicate what will be included in the performance specification to meet the RFP evaluation criteria and mandatory requirements.

**Item 12:** Will ONTC agree to extend the submission deadline for this RFP?

**Answer:** Yes. The revised submission deadline is now **Friday, November 28, 2025 at 2:00:00 p.m.** 

Please be advised that <u>Section 1.6.1 - Key Dates</u> of the RFP has been updated. The revised table is provided below for your reference.

## 1.6.1 Key Dates

| Issue Date of RFP            | Monday, November 03, 2025                       |
|------------------------------|-------------------------------------------------|
| Mandatory Site Visit         | Not Applicable                                  |
| Deadline for Questions       | Monday, November 24, 2025                       |
| Deadline for Issuing Addenda | Wednesday, November 26, 2025                    |
| Submission Deadline          | Friday, November 28, 2025 at 2:00:00 local time |
| Irrevocability Period        | Ninety (90) calendar days                       |

The RFP timetable is tentative only and may be changed by ONTC at any time.

**Item 13:** Please refer to revised Appendix B – RFP Particulars sections as follows:

• Section D – Mandatory Technical Requirements

| Mandatory Requirement                                                                                                                                                                                                                                                                                      | Revised Mandatory Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paint, Blast, and Wash Booth Subject<br>Matter Expert (SME) shall have at least five<br>(5) years of proven experience in designing<br>and supplying Paint and Blast booths.<br>Subject Matter Expert should have<br>experience working with Blast One, Nova<br>Finishing Products, or an equivalent equal | Paint, Blast, and Wash Booth Subject Matter Expert (SME) shall have at least five (5) years of proven experience in designing and supplying Paint and Blast booths. Subject Matter Expert should have experience working with Blast One, Nova Finishing Products, or an equivalent equal. A prime consultant, rather than an SME, will also be considered if they can explain in detail how they can provide a performance specification for a turnkey spray booth and blast booth solution for competitive bidding. |

 Section F - Evaluation Criteria - Technical Proposal Contents - Item No. 1.3: Experience and Qualifications:

| Description                                                                                                                                                                       | Revised Description                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| shall demonstrate their knowledge and expertise by providing references for <b>three (3) projects</b> of similar size and scope to confirm that Proponents has the experience and | Experience and Qualifications: Proponents shall demonstrate their knowledge and expertise by providing references for three (3) projects of similar size and scope to confirm that Proponents has the experience and resources to complete the project.  The project descriptions shall include: |  |  |
| <ul><li>a) Client name and contact details</li><li>b) Project scope and value</li><li>c) Scheduled vs. actual start/end dates</li></ul>                                           | <ul><li>a) Client name and contact details</li><li>b) Project scope and value</li><li>c) Scheduled vs. actual start/end dates</li></ul>                                                                                                                                                          |  |  |

- d) Description of work performed and use of subcontractors
- e) Outcomes (e.g., completed on schedule/budget)

Proponents or their

subconsultants/subcontractor can provide detailed engineering experience of paint and blast booths and/or projects in the railway industry.

ONTC may, in its sole discretion, confirm the Respondent's experience in the projects identified by contacting the named contacts above.

- d) Description of work performed and use of subcontractors
- e) Outcomes (e.g., completed on schedule/budget)

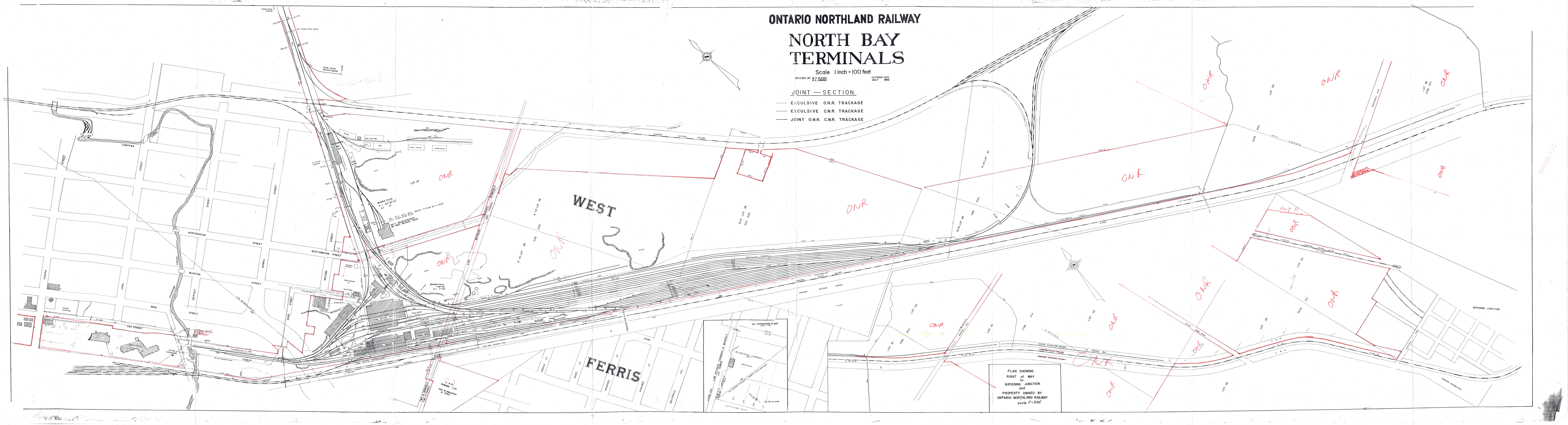
Proponents or their

subconsultants/subcontractor may receive higher scores for demonstrating detailed design and engineering experience related to paint booths and/or relevant projects in the railway industry.

ONTC is not to be provided as a project reference.

ONTC may, in its sole discretion, confirm the Respondent's experience in the projects identified by contacting the named contacts above.

• Section F - Evaluation Criteria - Technical Proposal Contents - Item No. 1.4: Resources


#### **Description Revised Description** Resources: Proponents shall demonstrate their ability to fulfil the requirements of the RFP. Resources: Proponents shall demonstrate Include an organizational chart of the proposed their ability to fulfil the requirements of the team, along with their resumes and Paint and RFP. Include an organizational chart of the Blast Booth Subject Matter Expert (SME) as proposed team along with their resumes outlined in the Mandatory Requirements. and Paint and Blast Booth Subject Matter If a proponent decides to provide a Expert (SME) as outlined in the Mandatory performance specification for a turnkey spray booth and blast booth solution for Requirements. competitive bidding, scoring will be determined by the details they provide.

This Addendum hereby forms part of the RFP.

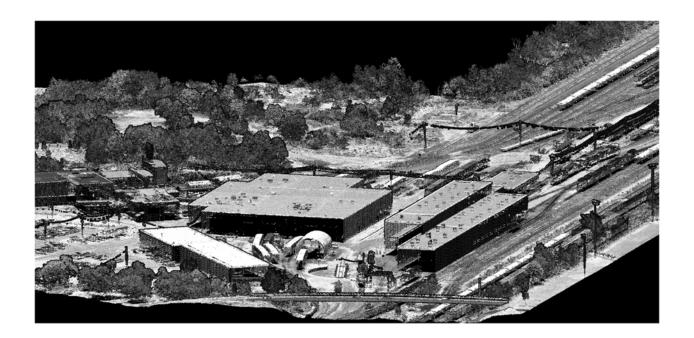
Regards,

Brinda Ranpura
Procurement Contracts Specialist
brinda.ranpura@ontarionorthland.ca

# "Appendix A"






# **ONTC North Bay Rail Yard**

**Client: Ontario Northland Transit Commission** 

**Project: North Bay Rail Yard Survey** 

Report Date: October 20, 2023

**TULLOCH Project #: 232577** 





# **Contents**

| 1. Project Summary                                                                                               | 2       |
|------------------------------------------------------------------------------------------------------------------|---------|
| 1.1 Location:                                                                                                    | 2       |
| 1.2 Client Information:                                                                                          | 2       |
| 1.3 Coordinate Systems:                                                                                          | 2       |
| 1.4 Survey Methods:                                                                                              | 2       |
| 1.5 Project Deliverables:                                                                                        | 2       |
| 2. Data Processing and QA\QC                                                                                     | 3       |
| 2.1 ALS Registration Points                                                                                      | 3       |
| 2.2 ALS Data Acquisition                                                                                         | 4       |
| 2.3 Data Processing and QA/QC                                                                                    | 5       |
| 2.4 LiDAR Data Classification                                                                                    | 5       |
| 2.5 Project Anomalies                                                                                            | 5       |
| <ol> <li>Appendix A – ALS Vertical Control report</li> <li>Appendix B – Vertical Control Dz Histogram</li> </ol> | 7<br>11 |
| Figures                                                                                                          |         |
| Figure 1 Project Trajectory                                                                                      | 4       |
| Tables                                                                                                           |         |
| Table 1: ALS Vertical Control Report (Full report is in Appendix                                                 | A) 3    |
| Table 2 LiDAR Classification                                                                                     | 5       |



#### 1. PROJECT SUMMARY

#### 1.1 Location:

The Ontario Northland Transportation Commission (ONTC) North Bay rail yard is located in North Bay, Ontario. The site consists of an area that is approximately 0.48 km<sup>2</sup>.

#### 1.2 Client Information:

Company: AECOM

Address: 5090 Explorer Drive Suite 1000 Mississauga, Ontario, L4W 4X6, Canada

Contact Name: Manan Raval Email: manan.raval@aecom.com

#### 1.3 Coordinate Systems:

**Acquisition Coordinate System** 

Reference Frame: NAD83 CSRS 2010 v7

Vertical Datum: CGVD28:78

Projection: UTM 17 Geoid Model: HT 2.0

Units: Meters

#### 1.4 Survey Methods:

Airborne LiDAR Survey

Airborne Survey Aircraft: R 44

Altitude: 300 m AGL Aircraft speed: 70 kts

Laser Scanner: Riegl VQ-480i

Laser Pulse Repetition Rate (PRR): 400 kHz

Airborne Photo Survey

Airborne Survey Aircraft: R 44

Altitude: 1270 m AGL Aircraft speed: 80 kts

Laser Scanner: PhaseOne iXM-100

#### 1.5 Project Deliverables:

- LiDAR data classified per project table in LAS.
- Ground Model Key Points (MKP) in ASCII x,y,z format.
- 0.25m smoothed contours in DWG format.
- 6cm Ortho imagery in Geo Tiff Format



The North Bay Yard LiDAR project involved the acquisition of Airborne LiDAR (ALS) and Orthophoto for approximately 0.5 km<sup>2</sup> located in North Bay, Ontario. Tasks included collecting project control, performing an airborne LiDAR and Orthophoto survey, generating point cloud and orthophotos. The file deliverables are noted in the Project Deliverable section.

Tulloch employed an airborne LiDAR system to map the area of interest. The survey data was collected onboard a Roberston R-44 on August 4<sup>th</sup>, 2023. The LiDAR was collected with a Riegl VQ-480i system, and the Orthophoto was collected using a PhaseOne iXM-100 camera.

The VQ-480i Airborne data were processed, checked, and verified for completeness, coverage, and relative integrity. On average, the point density was observed at approximately 40 pts/m² on the hard and flat surfaces in open areas. In the calibration phase, the data were checked in detail for relative alignment (Flightline to Flightline within passes and Flightline pass to Flightline pass) to ensure the data met system and project specifications. The final data were compared to the registration points through a vertical control report, as per Table 1 below.

 Average
 -0.016

 Minimum
 -0.067

 Maximum
 +0.030

 Average Magnitude
 0.018

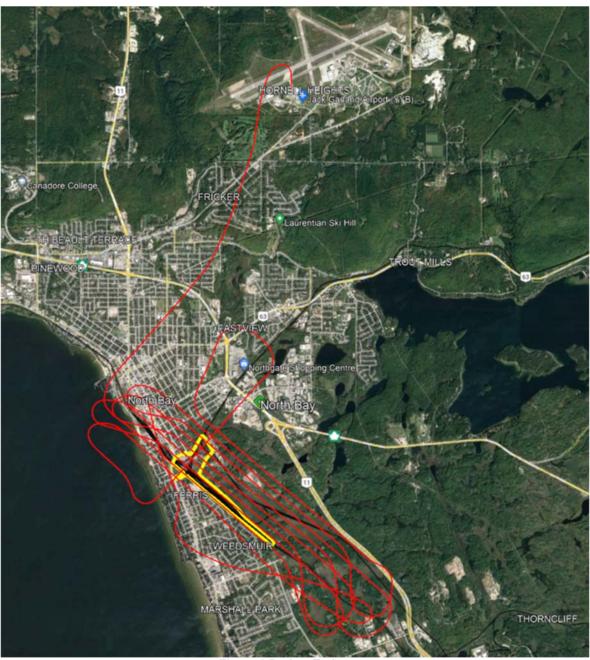
 RMSe
 0.023

 Std. Deviation
 0.015

Table 1: ALS Vertical Control Report (Full report is in Appendix A)

LiDAR accuracy for the project was met under the project specifications.

#### 2. DATA PROCESSING AND QA\QC


#### 2.1 ALS Registration Points

Registration points were surveyed throughout the project to calibrate and constrain the ALS survey. ALS control points were surveyed using RTK sessions. The RTK sessions were tied to project control by PPP sessions. Registration points have been collected using the following feature codes. The control report in Appendix A contains the following codes: AE: Asphalt Edge, AS: Asphalt String, CB: Catch Basian, CR: Crown of Road, ES: Edge of Shoulder, Gate: Gate line at ground, GS: Gravel String, MH: Maintenance Lid, PS: Paint Striping, SW: Side Walk, Target: Photo Target, and WV: Water Valve.



## 2.2 ALS Data Acquisition

Data airborne acquisition took place on August 4<sup>th</sup>, during optimal GPS windows. The project trajectory is displayed as red lines in Figure 1. The Can-Net station in North Bay was used as a base station during the acquisition for both flights. System trajectory was post-processed using kinematic software (TerraPOS).



**Figure 1 Project Trajectory** 



#### 2.3 Data Processing and QA/QC

Data processing began upon airborne acquisition completion, where data were checked for completeness and coverage. Once the trajectory was processed, it was used to register and georeference the point cloud. Next, airborne data were adjusted to the project control using the registration points. The geo-referenced point cloud data was then QA'd using multiple profiles to detect flight lines offset by roll, pitch or heading.

Surface models were created using classified ground points from the LAS. Models were checked for any anomalies in the surface point cloud classification.

#### 2.4 LiDAR Data Classification

The LiDAR data has been classified through automatic routines and manual verification. Points in the LAS data tiles have a class attribute assigned to each point. The used classes are listed in table 2 below.

| LiDAR Class | Description     |
|-------------|-----------------|
| Class 2     | Ground          |
| Class 3     | Low Vegetation  |
| Class 5     | High Vegetation |
| Class 6     | Building        |
| Class 7     | Low Point       |

**Table 2 LiDAR Classification** 

#### 2.5 LiDAR Deliverables

#### **Classified LiDAR data tiles**

Calibrated LiDAR strips were processed into 500m x 500m data tiles. An automatic macro was used to generate ground-classified points. The lowest points based on the surrounding points are classified as ground. Points above the ground are then classified as low and high points based on height above the ground classification. Low vegetation are points up to 2m above the ground points. High vegetation are points more than 2m above the ground classified points. An analyst then reviews the auto-classified points to confirm the ground classification. Buildings are then manually classified.

#### **Ground Model Key Points**

Ground model Key Points (MKP) are generated from the ground-classified data. MKP represents the minimum number of points required to model the surface. The ground data is first classified based on a 5m grid. If the ground-classified points inside the 5m grid are within +/- 20cm, they are excluded from the MKP data set. This maintains the definition on the surface with the minimum number of points.



#### 0.25m Smoothed Contours

Contours are generated from the ground-classified data. Minor contours are generated at a 0.25m interval. Major contours are generated at 1.25m intervals. Contours have been exported in an AutoCAD dwg format.

# 2.6 Project Anomalies

No project anomalies were identified while reviewing the LiDAR data or products.



# 3. APPENDIX A – ALS VERTICAL CONTROL REPORT

| 00016 37                                                                                                     |     |
|--------------------------------------------------------------------------------------------------------------|-----|
| 20016_AE 619036.059 5128186.259 197.944 197.948 +0.0                                                         | 04  |
| 20021_AE 619030.579 5128183.790 197.774 197.767 -0.0                                                         |     |
| 20022_CR 619026.863 5128182.698 197.823 197.803 -0.0                                                         |     |
| 20023_AE 619023.318 5128181.395 197.835 197.798 -0.0                                                         |     |
| 20030_AE 619030.531 5128163.898 197.847 197.837 -0.0                                                         |     |
| 20031_CR 619033.886 5128165.096 197.906 197.897 -0.0                                                         |     |
| 20032_AE 619037.130 5128166.464 197.825 197.815 -0.0                                                         |     |
| 20037_AE 619041.291 5128168.807 197.867 197.821 -0.0                                                         |     |
| 20038_AE 619044.500 5128169.955 197.853 197.868 +0.0                                                         |     |
| 20046_AE 619043.981 5128149.159 197.882 197.871 -0.0                                                         |     |
| 20047_CR 619040.793 5128147.994 197.958 197.941 -0.0                                                         |     |
| 20048_AE 619037.508 5128146.820 197.929 197.924 -0.0                                                         |     |
| 20051_MH 619043.796 5128146.792 197.944 197.911 -0.0                                                         |     |
| 20052_MH 619010.471 5128208.552 197.683 197.688 +0.0                                                         |     |
| 20053_MH 619008.804 5128213.277 197.838 197.830 -0.0                                                         |     |
| 20054_CB 618965.836 5128197.116 197.425 197.413 -0.0                                                         |     |
| 20055_CB 618969.642 5128185.488 197.418 197.378 -0.0                                                         |     |
| 20056_PS STOP 618950.036 5128183.348 197.656 197.659 +0.0                                                    |     |
| 20057_PS STOP 618949.487 5128183.229 197.676 197.671 -0.0                                                    |     |
| 20058_PS STOP 618946.113 5128193.360 197.553 197.554 +0.0                                                    |     |
| 20059_PS STOP 618947.083 5128193.026 197.548 197.547 -0.0                                                    |     |
| 20064_CB 619038.617 5128222.104 197.626 197.582 -0.0                                                         |     |
| 20065_CB 619075.719 5128226.201 197.970 197.940 -0.0                                                         |     |
| 20067_AE 618711.981 5128095.752 197.245 197.229 -0.0                                                         |     |
| 20068_CR 618714.691 5128086.756 197.394 197.391 -0.0<br>20069_AE 618715.948 5128083.355 197.322 197.308 -0.0 |     |
| 20069_AE 618715.948 5128083.355 197.322 197.308 -0.0<br>20072_AE 618717.516 5128078.261 197.415 197.418 +0.0 |     |
| 20072_AE 618717.516 5128078.281 197.415 197.416 +0.0                                                         |     |
| 20076_AE 618731.080 5128093.197 197.303 197.284 -0.0                                                         |     |
| 20077_CR 018731.080 5128093.197 197.409 197.404 -0.0<br>20078_AE 618728.402 5128100.870 197.254 197.251 -0.0 |     |
| 20079_SW 618728.448 5128100.918 197.257 197.251 -0.0                                                         |     |
| 20080_SW 618727.872 5128102.272 197.284 197.281 -0.0                                                         |     |
| 20085_SW 618745.334 5128109.304 197.306 197.336 +0.0                                                         |     |
| 20086_SW 618745.860 5128107.955 197.283 197.283 +0.0                                                         |     |
| 20087_AE 618745.885 5128107.922 197.285 197.284 -0.0                                                         |     |
| 20088_CR 618748.644 5128099.995 197.391 197.392 +0.0                                                         |     |
| 20089_AE 618749.974 5128096.803 197.245 197.270 +0.0                                                         |     |
| 20093_MH 618731.943 5128082.843 197.280 197.256 -0.0                                                         |     |
| 20094_MH 618722.720 5128089.154 197.333 197.321 -0.0                                                         |     |
| 20121_PS STOP 618895.513 5128173.942 197.574 197.565 -0.0                                                    |     |
|                                                                                                              |     |
| 20123_PS STOP 618895.665 5128173.332 197.590 197.581 -0.0                                                    |     |
| 20124_PS CW 618942.270 5128193.960 197.597 197.600 +0.0                                                      |     |
|                                                                                                              |     |
| 20126_PS CW 618921.528 5128186.261 197.698 197.682 -0.0                                                      |     |
| 20127_PS CW 618921.660 5128186.181 197.694 197.686 -0.0                                                      | 8 0 |
| 20095_AS 619935.486 5127573.511 198.666 198.656 -0.0                                                         | 10  |
| 20096_AS 619931.547 5127571.931 198.482 198.474 -0.0                                                         | 8 0 |



| 20097_AE             | 619929.625 | 5127571.536 | 198.451 | 198.456 | +0.005 |
|----------------------|------------|-------------|---------|---------|--------|
| 20097_AE<br>20098_CR | 619926.893 | 5127570.602 | 198.481 | 198.466 | -0.015 |
| 20098_CR<br>20099 AE | 619922.178 | 5127569.138 | 198.400 | 198.396 | -0.013 |
| <del>-</del>         |            |             |         |         |        |
| 20108_AE             | 619929.048 | 5127551.775 | 198.307 | 198.319 | +0.012 |
| 20109_CR             | 619932.680 | 5127553.134 | 198.339 | 198.333 | -0.006 |
| 20110_AE             | 619936.292 | 5127554.471 | 198.341 | 198.318 | -0.023 |
| 20111_AS             | 619938.499 | 5127555.335 | 198.366 | 198.367 | +0.001 |
| 20112_AS             | 619942.731 | 5127557.038 | 198.640 | 198.616 | -0.024 |
| 20113_AS             | 619948.984 | 5127540.525 | 198.046 | 198.021 | -0.025 |
| 20114_AS             | 619945.065 | 5127538.986 | 198.258 | 198.248 | -0.010 |
| 20115_AE             | 619942.791 | 5127538.186 | 198.243 | 198.216 | -0.027 |
| 20116_CR             | 619939.007 | 5127536.943 | 198.290 | 198.277 | -0.013 |
| 20117_AE             | 619935.341 | 5127535.574 | 198.252 | 198.241 | -0.011 |
|                      | 619933.021 | 5127534.706 | 198.413 | 198.400 | -0.013 |
| 20119_AS             | 619929.543 | 5127533.310 | 198.641 | 198.626 | -0.015 |
| 20120_MH             | 619914.468 | 5127598.022 | 198.656 | 198.623 | -0.033 |
| 20132_MH             | 619935.631 | 5127545.646 | 198.386 | 198.349 | -0.037 |
| 20137_AE             | 620247.180 | 5127275.457 | 197.755 | 197.708 | -0.047 |
| 20137_AE<br>20138_CR | 620247.180 | 5127277.933 | 197.755 | 197.708 | -0.047 |
|                      | 620251.536 |             |         |         | -0.033 |
| 20139_AE             |            | 5127280.153 | 197.723 | 197.700 |        |
| 20144_AS             | 620271.136 | 5127273.138 | 197.828 | 197.811 | -0.017 |
| 20145_AS             | 620268.485 | 5127270.248 | 197.714 | 197.699 | -0.015 |
| 20146_AE             | 620266.722 | 5127268.255 | 197.630 | 197.613 | -0.017 |
| 20147_CR             | 620264.830 | 5127265.964 | 197.703 | 197.705 | +0.002 |
| 20148_AE             | 620262.764 | 5127263.305 | 197.687 | 197.674 | -0.013 |
| 20152_AS             | 620273.212 | 5127246.656 | 197.744 | 197.741 | -0.003 |
| 20153_AS             | 620275.873 | 5127249.727 | 197.651 | 197.652 | +0.001 |
| 20154_AE             | 620277.542 | 5127251.706 | 197.697 | 197.692 | -0.005 |
| 20155_CR             | 620279.614 | 5127254.174 | 197.762 | 197.747 | -0.015 |
| 20156_AE             | 620281.599 | 5127256.506 | 197.647 | 197.646 | -0.001 |
| 20163_MH             | 620284.038 | 5127250.556 | 197.749 | 197.733 | -0.016 |
| 20169_AE             | 619552.995 | 5127821.470 | 197.839 | 197.818 | -0.021 |
| 20170_CR             | 619555.097 | 5127824.439 | 197.894 | 197.882 | -0.012 |
| 20171_AE             | 619557.513 | 5127827.319 | 197.829 | 197.831 | +0.002 |
| 20185_AE             | 619572.312 | 5127815.681 | 197.828 | 197.824 | -0.004 |
| <br>20186_CR         | 619569.974 | 5127812.606 | 197.906 | 197.904 | -0.002 |
| 20187_AE             | 619567.825 | 5127809.749 | 197.830 | 197.832 | +0.002 |
| 20188_AS             | 619566.331 | 5127807.915 | 197.976 | 197.981 | +0.005 |
| 20189_AS             | 619566.194 | 5127807.688 | 198.042 | 198.019 | -0.023 |
| 20190_AS             | 619566.036 | 5127807.497 | 198.011 | 198.015 | +0.004 |
| 20190_AS<br>20191_AS | 619564.909 | 5127806.088 | 198.169 | 198.144 | -0.025 |
| 20191_AS<br>20192_AS | 619563.790 | 5127804.724 | 198.246 | 198.236 | -0.010 |
|                      | 619582.913 | 5127797.956 |         |         | +0.002 |
| 20199_AE<br>20200_CR |            |             | 197.821 | 197.823 | -0.002 |
| <del>_</del>         | 619585.177 | 5127800.689 | 197.908 | 197.904 |        |
| 20201_AE             | 619587.512 | 5127803.847 | 197.846 | 197.856 | +0.010 |
| 20202_AS             | 619589.224 | 5127806.003 | 198.041 | 198.035 | -0.006 |
| 20203_AS             | 619591.309 | 5127808.516 | 198.274 | 198.259 | -0.015 |
| 20204_MH             | 619594.025 | 5127793.599 | 197.934 | 197.913 | -0.021 |
| 20205_MH             | 619594.941 | 5127789.607 | 197.855 | 197.852 | -0.003 |
| 20211_AE             | 619215.767 | 5128657.025 | 203.684 | 203.664 | -0.020 |
| 20212_CR             | 619214.079 | 5128659.736 | 203.801 | 203.774 | -0.027 |
| 20213_AE             | 619212.347 | 5128662.443 | 203.738 | 203.732 | -0.006 |
| 20220_AE             | 619195.944 | 5128652.376 | 204.009 | 203.993 | -0.016 |
|                      |            |             |         |         |        |



| 20221_CR             | 619197.752 | 5128649.293 | 204.126 | 204.079 | -0.047 |
|----------------------|------------|-------------|---------|---------|--------|
| 20222_AE             | 619199.334 | 5128646.583 | 204.048 | 204.016 | -0.032 |
| 20230_AE             | 619184.160 | 5128636.018 | 204.324 | 204.293 | -0.031 |
| 20231_CR             | 619181.200 | 5128639.834 | 204.347 | 204.327 | -0.020 |
| 20232_AE             | 619179.444 | 5128642.458 | 204.283 | 204.260 | -0.023 |
| 20232_AB<br>20237_WV | 619182.560 | 5128638.195 | 201.203 | 201.200 | -0.036 |
|                      |            |             |         |         |        |
| 20238_MH             | 619182.189 | 5128641.420 | 204.319 | 204.304 | -0.015 |
| 20239_MH             | 619170.000 | 5128633.719 | 204.382 | 204.347 | -0.035 |
| 20240_MH             | 619168.397 | 5128634.769 | 204.395 | 204.334 | -0.061 |
| 20241_WV             | 619166.880 | 5128644.052 | 204.617 | 204.588 | -0.029 |
| 20246_MH             | 619143.623 | 5128676.079 | 203.387 | 203.349 | -0.038 |
| 20247_WV             | 619147.542 | 5128677.372 | 203.352 | 203.336 | -0.016 |
| 20248_MH             | 619134.292 | 5128688.291 | 204.321 | 204.313 | -0.008 |
| 20249_MH             | 619082.765 | 5128769.558 | 207.997 | 207.950 | -0.047 |
| 20251_PS             | 619031.329 | 5128736.990 | 204.612 | 204.584 | -0.028 |
| 20252_PS             | 619031.281 | 5128737.085 | 204.611 | 204.584 | -0.027 |
| 20253_PS             | 619008.895 | 5128722.619 | 203.952 | 203.929 | -0.023 |
| 20254_PS             | 619008.958 | 5128722.533 | 203.948 | 203.932 | -0.016 |
| 20251_15<br>20255_WV | 619010.589 | 5128718.557 | 203.817 | 203.793 | -0.024 |
|                      | 619001.322 | 5128714.949 | 203.743 | 203.793 | -0.024 |
| 20256_MH             |            |             |         |         |        |
| 20257_WV             | 619006.156 | 5128709.341 | 203.502 | 203.490 | -0.012 |
| 20259_MH             | 618993.088 | 5128722.700 | 203.933 | 203.914 | -0.019 |
| 20260_MH             | 619018.955 | 5128686.109 | 202.849 | 202.814 | -0.035 |
| 20262_CB             | 619036.064 | 5128651.996 | 201.965 | 201.936 | -0.029 |
| 20263_CB             | 619043.330 | 5128642.676 | 202.110 | 202.067 | -0.043 |
| 20264_MH             | 619043.202 | 5128648.009 | 202.275 | 202.248 | -0.027 |
| 20265_WV             | 619035.108 | 5128643.821 | 202.213 | 202.182 | -0.031 |
| 20266_WV             | 619033.091 | 5128642.921 | 202.172 | 202.158 | -0.014 |
| 20270_AE             | 618984.117 | 5128607.806 | 202.273 | 202.250 | -0.023 |
|                      | 618982.395 | 5128610.928 | 202.307 | 202.287 | -0.020 |
|                      | 618980.620 | 5128613.796 | 202.252 | 202.252 | +0.000 |
| 20273_ES             | 618980.398 | 5128614.223 | 202.267 | 202.266 | -0.001 |
| 20274_GS             | 618979.780 | 5128615.436 | 202.263 | 202.276 | +0.013 |
| 20271_GS<br>20275_GS | 618978.818 | 5128617.578 | 202.290 | 202.274 | -0.016 |
| 20275_GS<br>20276_GS | 618993.921 | 5128627.933 | 202.258 | 202.274 | -0.001 |
|                      |            |             |         | 202.257 |        |
| 20277_GS             | 618996.184 | 5128625.189 | 202.271 | 202.260 | -0.011 |
| 20279_AE             | 618997.197 | 5128623.556 | 202.175 |         | -0.006 |
| 20280_CR             | 618998.799 | 5128621.180 | 202.256 | 202.229 | -0.027 |
| 20281_AE             | 619000.879 | 5128617.963 | 202.242 | 202.222 | -0.020 |
| 20282_AS             | 619002.003 | 5128616.138 | 202.247 | 202.227 | -0.020 |
| 20283_AS             | 619003.436 | 5128614.319 | 202.271 | 202.258 | -0.013 |
| 20290_AE             | 619016.310 | 5128627.846 | 202.204 | 202.169 | -0.035 |
| 20291_CR             | 619014.703 | 5128630.610 | 202.219 | 202.194 | -0.025 |
| 20292_AE             | 619013.624 | 5128633.785 | 202.179 | 202.160 | -0.019 |
| 20294_GS             | 619012.650 | 5128636.201 | 202.256 | 202.249 | -0.007 |
| 20295_GS             | 619011.059 | 5128638.727 | 202.344 | 202.317 | -0.027 |
|                      | 619072.702 | 5128593.716 | 201.769 | 201.737 | -0.032 |
| 20297_CB             | 619086.428 | 5128590.667 | 201.634 | 201.591 | -0.043 |
| 20298_CB             | 619095.169 | 5128590.992 | 201.507 | 201.460 | -0.047 |
| 20290_CB             | 619095.925 | 5128591.423 | 201.507 | 201.100 | -0.054 |
| 20300_CB             | 619099.752 | 5128585.194 | 201.517 | 201.403 | -0.034 |
| 20300_CB<br>20302_WV | 619099.732 | 5128584.400 | 201.514 | 201.483 | -0.031 |
| _                    |            |             |         |         |        |
| 20303_CB             | 619096.799 | 5128574.053 | 201.560 | 201.528 | -0.032 |



| 20304_WV        | 619088.119 | 5128579.376 | 201.763 | 201.751 | -0.012 |
|-----------------|------------|-------------|---------|---------|--------|
| 20305_MH        | 619085.544 | 5128580.662 | 201.839 | 201.813 | -0.026 |
| 20306_MH        | 619082.429 | 5128580.043 | 201.932 | 201.920 | -0.012 |
| 20308_MH        | 619099.322 | 5128553.389 | 201.441 | 201.417 | -0.024 |
| 20309_MH        | 619126.426 | 5128606.208 | 201.912 | 201.901 | -0.011 |
| 20310_MH        | 619225.525 | 5128562.472 | 202.792 | 202.755 | -0.037 |
| 20311_GRATE     | 619232.334 | 5128552.902 | 202.563 | 202.542 | -0.021 |
| 20312_GRATE     | 619231.949 | 5128552.137 | 202.593 | 202.578 | -0.015 |
| 20313_GRATE     | 619232.727 | 5128551.745 | 202.550 | 202.550 | +0.000 |
| 20314_GRATE     | 619233.093 | 5128552.510 | 202.524 | 202.502 | -0.022 |
| 20323_AE        | 620011.579 | 5128178.609 | 199.554 | 199.557 | +0.003 |
| 20324_CR        | 620009.800 | 5128176.184 | 199.631 | 199.588 | -0.043 |
| 20325_AE        | 620008.013 | 5128173.823 | 199.572 | 199.542 | -0.030 |
| 20334_AE        | 620021.869 | 5128163.359 | 199.524 | 199.493 | -0.031 |
| 20335_CR        | 620023.606 | 5128165.857 | 199.565 | 199.525 | -0.040 |
| 20336_AE        | 620025.119 | 5128167.976 | 199.555 | 199.511 | -0.044 |
| 20345_AE        | 620039.595 | 5128157.201 | 199.555 | 199.536 | -0.019 |
| 20346_CR        | 620037.734 | 5128155.146 | 199.631 | 199.601 | -0.030 |
| 20347_AE        | 620035.802 | 5128152.816 | 199.548 | 199.510 | -0.038 |
| 20361_AE        | 619414.476 | 5128455.230 | 203.441 | 203.426 | -0.015 |
| 20362_CR        | 619412.209 | 5128451.900 | 203.551 | 203.517 | -0.034 |
| 20363_AE        | 619410.477 | 5128449.030 | 203.463 | 203.443 | -0.020 |
| 20375_AE        | 619392.201 | 5128460.776 | 203.442 | 203.446 | +0.004 |
| 20376_CR        | 619393.760 | 5128463.659 | 203.551 | 203.523 | -0.028 |
| 20377_AE        | 619395.504 | 5128466.453 | 203.496 | 203.466 | -0.030 |
| 20390_AE        | 619378.619 | 5128477.984 | 203.422 | 203.400 | -0.022 |
| 20391_CR        | 619376.397 | 5128474.877 | 203.493 | 203.452 | -0.041 |
| 20392_AE        | 619374.070 | 5128471.612 | 203.355 | 203.345 | -0.010 |
| 25818_TARGET PT | 620752.694 | 5127063.721 | 197.413 | 197.415 | +0.002 |
|                 |            |             |         |         |        |



# 4. APPENDIX B - VERTICAL CONTROL DZ HISTOGRAM

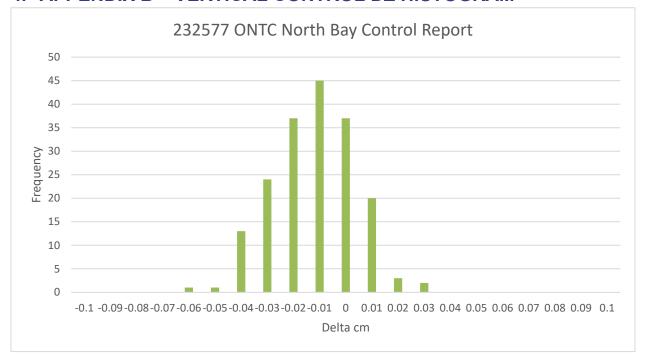



Figure 2 Vertical Control Dz Histogram (LiDAR values minus control)

SKETCH SHOWING TOPOGRAPHIC INFORMATION FOR THE ONTO NORTH BAY SHOP COMPLEX AND UNDERGROUND DRAINAGE TULLOCH GEOMATICS INC. 2023 THE INTENDED PLOT SIZE OF THIS PLAN IS 2159mm IN WIDTH BY 2159mm IN HEIGHT WHEN PLOTTED AT A SCALE OF 1:1000. THE REPRODUCTION, ALTERATION, OR USE OF THIS SKETCH IN WHOLE OR IN PART WITHOUT THE EXPRESS PERMISSION OF TULLOCH GEOMATICS INC. O.L.S. IS STRICTLY PROHIBITED. TOPOGRAPHIC INFORMATION COLLECTED BETWEEN JULY 24 AND NOVEMBER 16, DISTANCES AND ELEVATIONS SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048. COORDINATE SYSTEM: UTM ZONE 17, NAD83 (CSRS) (2010.0) ELEVATION NOTE: ELEVATIONS SHOWN HEREON ARE GEODETIC, ARE REFERRED TO THE CANADIAN GEODETIC VERTICAL DATUM OF 1928 (CGVD28) AND ARE DERIVED FROM REAL TIME NETWORK (RTN) OBSERVATIONS CONTOURS SHOWN ON THIS PLAN ARE DERIVED FROM AIRBORNE LIDAR FLOWN ON AUGUST 4th, 2023. CONTOUR INTERVAL = 0.25m DRAINAGE INVERT NOTE: PLAN TO BE ACCOMPANIED BY PROJECT INVERT CALCULATION SHEET.
PLEASE SEE FILE 232577 ONTC INVERT COMPUTATION SHEET FOR INVERT GEOGRAPHIC LOCATION NOTE: PART OF THE GEOGRAPHIC TOWNSHIP OF WIDDIFIELD AND PART OF THE GEOGRAPHIC TOWNSHIP OF WEST FERRIS IN THE CITY OF NORTH BAY RW DENOTES RETAINING WALL
BLO DENOTES BUILDING
TF DENOTES TRAFFIC LIGHT
CLF DENOTES CHAINLINK FENCE PWF DENOTES POST AND WIRE FENCE BF DENOTES BOARD FENCE HP DENOTES HYDRO POLE

MW DENOTES MONITORING WELL

AN DENOTES POLE ANCHOR

HP DENOTES HYDRO POLE

BP DENOTES BELL POLE

LS DENOTES LIGHT STANDARD

RW DENOTES RETAINING WALL

CSP DENOTES CORRUGATED STEEL PIPE

CP DENOTES CONCRETE PIPE

PP DENOTES PLASTIC PIPE

HDPE DENOTES REINFORCED OPEN CONCRETE CULVERT

BOL DENOTES BOLLARD

SI DENOTES BOLLARD

SI DENOTES SIGN

RKO DENOTES STOCK PILE

FH DENOTES FIRE HYDRANT

WV DENOTES WATER VALVE

RWD DENOTES RAILWAY DERAILER

RSS DENOTES RAILWAY SIGN/SIGNAL

TP DENOTES TELEGRAPH POLE

SBGR DENOTES STEEL BEAM GUARD RAIL HP DENOTES HYDRO POLE SBGR DENOTES STEEL BEAM GUARD RAIL DI DENOTES DITCH INLET MH DENOTES MAINTENANCE HOLE CB DENOTES CATCH BASIN DENOTES TREE DENOTES RAILWAY TOP OF RAIL

DENOTES TREE LINE

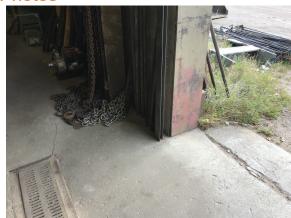
X

DENOTES FENCE LINE <u>CAUTION</u>:
This is not a plan of survey and shall not be used except for the purpose indicated in the title block. THE PROPERTY BOUNDARIES ON THIS SKETCH HAVE BEEN COMPILED FROM FIELD SURVEY EFFORTS AND LAND REGISTRY PLANS AND HAVE NOT BEEN CONFIRMED. THIS SKETCH REPRESENTS THE BEST INFORMATION AVAILABLE AT THE TIME OF PREPARATION. THIS SKETCH WAS PREPARED FOR DISCUSSION PURPOSE ONLY AND ASSUMES NO RESPONSIBILITY FOR THE LOCATION OF ANY UNDERGROUND CONDUITS, PIPES OR OTHER FACILITIES WHETHER SHOWN OR OMITTED FROM THIS SKETCH. ALL UNDERGROUND FACILITIES SHOULD BE LOCATED BY THE RESPECTIVE AUTHORITIES PRIOR TO CONSTRUCTION.

# APPENDIX A Building Condition Assessment Report



# A Substructure A10 Foundations


| <b>Element Description</b>                |                                |
|-------------------------------------------|--------------------------------|
| Name                                      | A101001 - Standard Foundations |
| Installation Year                         | 1985                           |
| Condition                                 | 1 - Excellent                  |
| Expected Useful Life                      | 75 Years                       |
| Remaining Useful Life                     | 38 Years                       |
| Renewal Year                              | 2060                           |
| Quantity / Unit of Measure                | 185 / LM Footprint             |
| Unit Cost                                 | \$984.00                       |
| Difficulty / Regional / Soft Cost Factors | 1.00 / 1.30000 / 1.30000       |
| Replacement Cost                          | \$307,647.60                   |

## Description

The single-storey structure without a basement is constructed on concrete strip-footings that bear on engineered fill.

#### **Condition Narrative**

No significant deficiencies were observed or reported on the superstructure to suggest differential settlement of the building foundations. Since this element is mostly below grade and is concealed, no photographs are available to confirm the construction and condition.



North Bay New Maintenance of Way Shop - A101001



North Bay New Maintenance of Way Shop - A101001



North Bay New Maintenance of Way Shop - A101001

| Element Description                       |                          |
|-------------------------------------------|--------------------------|
| Name                                      | A103001 - Slab on Grade  |
| Installation Year                         | 1985                     |
| Condition                                 | 1 - Excellent            |
| Expected Useful Life                      | 75 Years                 |
| Remaining Useful Life                     | 38 Years                 |
| Renewal Year                              | 2060                     |
| Quantity / Unit of Measure                | 992 / SM Footprint       |
| Unit Cost                                 | \$71.33                  |
| Difficulty / Regional / Soft Cost Factors | 1.00 / 1.30000 / 1.30000 |
| Replacement Cost                          | \$119,583.32             |

## Description

The slab-on-grade, which is likely non-structural, is poured concrete continuously supported likely on a moisture barrier on a free draining gravel layer on engineered fill.

# **Condition Narrative**

No significant deficiencies were observed or reported. At the observed isolated cracks, no significant elevation difference to suggest differential settlement of the concrete slab-on-grade was noted. Recommend that the cracks be monitored and should significantly change be noted a licensed engineer be retained to evaluate the performance of the concrete slab-on-grade.



North Bay New Maintenance of Way Shop - A103001



North Bay New Maintenance of Way Shop - A103001

# B ShellB10 Superstructure

| Element Description                       |                          |
|-------------------------------------------|--------------------------|
| Name                                      | B103001 - Structure      |
| Installation Year                         | 1985                     |
| Condition                                 | 2 - Good                 |
| Expected Useful Life                      | 75 Years                 |
| Remaining Useful Life                     | 38 Years                 |
| Renewal Year                              | 2060                     |
| Quantity / Unit of Measure                | 992 / SM Building        |
| Unit Cost                                 | \$280.00                 |
| Difficulty / Regional / Soft Cost Factors | 1.00 / 1.30000 / 1.30000 |
| Replacement Cost                          | \$469,414.40             |

# Description

The building is a pre-engineered steel-framed structure, where tapered columns connected to roof beams support the roof metal deck on purlins.

## **Condition Narrative**

No significant deterioration was noted to suggest movement or twisting of the building structure.



North Bay New Maintenance of Way Shop - B103001



North Bay New Maintenance of Way Shop - B103001

## **B20** Exterior Enclosure

| Element Description                       |                          |  |  |  |
|-------------------------------------------|--------------------------|--|--|--|
| Name                                      | B201021 - Masonry        |  |  |  |
| Installation Year                         | 1985                     |  |  |  |
| Condition                                 | 1 - Excellent            |  |  |  |
| Expected Useful Life                      | 75 Years                 |  |  |  |
| Remaining Useful Life                     | 38 Years                 |  |  |  |
| Renewal Year                              | 2060                     |  |  |  |
| Quantity / Unit of Measure                | 360 / SM                 |  |  |  |
| Unit Cost                                 | \$600.00                 |  |  |  |
| Difficulty / Regional / Soft Cost Factors | 1.00 / 1.30000 / 1.30000 |  |  |  |
| Replacement Cost                          | \$365,040.00             |  |  |  |

# **Description**

The exterior wall system in the office area and grade level of the garage bay are concrete masonry walls, where the face brick is tied to the substrate by brick headers.

#### **Condition Narrative**

No significant deficiencies were observed or reported. However, a crack was observed in the southeast entrances. Repair is recommended to keep the system functional.



North Bay New Maintenance of Way Shop - B201021



North Bay New Maintenance of Way Shop - B201021



North Bay New Maintenance of Way Shop - B201021



North Bay New Maintenance of Way Shop - B201021

# Recommendations

| Recommendations #1 - Masonry |                                    |  |  |
|------------------------------|------------------------------------|--|--|
| Туре                         | Major Repair                       |  |  |
| Year                         | 2022                               |  |  |
| Cost                         | \$73,000.00                        |  |  |
| Priority                     | Priority D: Building Functionality |  |  |

A crack was observed in the southeast entrances. Repair is recommended to keep the system functional.

# "Appendix B"

#### **Prepared Rock Ballast - Specifications**

#### 1. Scope

This specification covers the requirements for grading and other significant physical properties of mineral aggregates for prepared ballast.

#### 2. General Requirements

Prepared ballast shall be crushed stone comprised of angular, hard, strong, and durable particles free from injurious amounts of deleterious substances and conforming to the requirements of these specifications.

The Suppliers/Contractor shall, at their own expense, furnish all and every kind of labour, tools, machinery and other plant, services and material whatsoever necessary for the preparation and delivery to the Ontario Northland Transportation Commission (ONTC) of:

- 9,000 tonnes on the Ramore Subdivision at Jardine.
- 20,000 tonnes on the Temagami subdivision at Rabbit Creek Pit.
- 46,000 tonnes on the Devonshire Subdivision between Porquis and Cochrane.

The stone ballast shall be prepared in every respect to the satisfaction of the Rail Infrastructure Department in the manner and upon the terms herein specified and according to specifications below and shall deliver to ONTC in stockpile locations as specified in the RFP Documents and at such time as required by the Rail Infrastructure Department to suit the aforesaid proposals which will form part of the contract.

Please note that crushed rock for the various locations is required as follows:

- The total order must be completed and delivered by June 14, 2024.

Ability to deliver as per the above schedule is of critical importance in the evaluation of the Proposals. In their responses, Respondents must stipulate in writing that they have the material, equipment, and manpower to deliver as required above.

#### 3. Quality Requirements

a) Deleterious substances shall not be present in prepared ballast in excess of the following amounts:

Soft and pliable pieces 5%Material finer than 200 sieve 1%

- b) The percentage of wear of prepared ballast as tested in the Los Angeles machine shall not be greater than 40% except otherwise specified by the Director, Rail Infrastructure.
- c) The soundness of prepared ballast shall be such that when tested in the sodium sulphate or magnesium sulphate soundness tests, the weighted average loss shall not exceed 10% after 5 cycles.

#### 4. Gradation Requirements

- a) The grading of prepared ballast shall be determined by test with laboratory sieves having square openings and conforming to current ASTM specification designated E-11.
- b) Crushed stone prepared ballast shall conform to the following requirements for grading:

|            |    | Normal<br>Size<br>Square<br>Opening | Amounts Finer than Each Sieve<br>(Square Opening Laboratory Sieves)<br>% by Weight |      |     |      |      |      |      |
|------------|----|-------------------------------------|------------------------------------------------------------------------------------|------|-----|------|------|------|------|
| Sieve Size |    |                                     | 2"                                                                                 | 1 ½" | 1"  | 3/4" | 1/2" | 3/8" | No.4 |
| % passing  | by | $1\frac{1}{2}" - \frac{3}{4}"$      | 100                                                                                | 90-  | 20- | 0-15 |      | 0-5  |      |
| Weight     |    |                                     |                                                                                    | 100  | 55  |      |      |      |      |

#### 5. Washing Ballast

The Supplier/Contractor shall use adequate washing procedures of the crushed stone or suitable dust-control methods to ensure that dust from crushing operation is not carried in the direction of the scales or the stockpile of the prepared stone from where it is loaded in railway hopper cars. If washing and dust control is not included in the unit price (tonne), it must be identified and shown as a separate unit cost on Proposal Form 1 A.

All Rock ballast crushed for Ontario Northland must be washed with high-pressure water nozzles in conjunction with a screening plant. Washing of any ballast will be in the final stage of the crushing operation prior to ballast being dumped into a hopper or waiting trucks.

The washed ballast must meet the acceptance of the Director Rail Infrastructure or his representative. Any ballast which fails to comply with this requirement will be rejected.

#### 6. Handling

Prepared ballast shall be handled at the producing plant in such a manner that is kept clean and free from segregation. It shall be loaded only into trucks which are in good order, tight enough to prevent leakage and waste of material, and which are clean and free from rubbish or any substance which would foul or damage ballast.

#### 7. Scaling and Inspection

The Successful Respondent(s) will be responsible for weighing and inspecting the crushed rock ballast to ensure total compliance with quantity ordered and with all specifications. Successful contractors will be required to provide gradation charts and, from time to time, samples of the crushed rock ballast. ONTC reserves the right of random inspections at the crushing site(s) and to shut down the crushing operation at any time if the crushed rock is not found to meet any and all specifications.

#### 8. Testing

Samples of the finished product for gradation and other required tests shall be taken from each 500 tonnes of prepared ballast, unless otherwise ordered by the Rail Infrastructure Department. The samples shall be representative and shall weigh not less than 50 pounds. The gradation of the samples is plotted on Ontario Northland Drawing No. A-4222 (A).

#### 9. Methods of Test

- a) Samples shall be secured in accordance with the current ASTM Method of Test, designation D75.
- b) Sieve analysis shall be made in accordance with the current ASTM Method of Test, designation C136.
- c) Material finer than the No.200 sieve shall be determined in accordance with the current ASTM Method of Test, designation C117-61T.
- d) The percentage of soft particles shall be determined in accordance with the current ASTM Method of Test, designation C235-57T.
- e) The resistance to abrasion shall be determined in accordance with the current ASTM Method of Test, designation C131-55, using the standard grading most nearly representative of the size of ballast specified.
- f) Soundness tests shall be made in accordance with the current ASTM Method of Test, designation C88-61T.
- g) The weight per cubic foot shall be determined in accordance with the current ASTM Method of Test, designation C29-60.

#### 10. Measurement and Payment

All ballast will be paid for by the tonne, and the Supplier/Contractor shall, at his own expense, provide, install, maintain, and remove scales of sufficient capacity for the measurement of such material. Such scales shall meet the approval of the Rail Infrastructure Department and shall be located at the site where material is produced as directed by a representative of the Rail Infrastructure Department. The Supplier/Contractor shall employ adequate washing of the crushed stone or dust control methods to ensure that the dust from the crushing operation is not carried in the direction of the scales or the stockpile of the prepared stone.

The approach roadway shall be constructed on a flat grade, level with the scale platform for at least one truck length on either side of the platform.

Before commencing to crush, the scales must measure within service limits of error according to Weights and Measures Acts and Regulations. The certification issue by the testing authority of the Government of Canada shall be on view at the scale at all times. Two copies of weight tickets shall be submitted to the Rail Infrastructure Department for every load delivered in this contract with tickets to be provided by the Supplier/Contractor in form required.

An inspector and/or Scaleman may be provided at ONTC's discretion when crushing is in progress.

All trucks used or delivery or finished product from crushing plant to stockpile shall be numbered with tare weight of each truck to be checked daily and shown on weight ticket with truck number. These tickets must be submitted to the Rail Infrastructure Department along with a daily summary of crushing production and stockpiled amounts.

Unit price per tonne of material shall be quoted as follows:

Prepared Stone: To be stockpiled adjacent to the railway at sidings or spurs adjacent to main line track on the Railway System as may be proposed by

the Respondent(s) and acceptable to the ONTC.

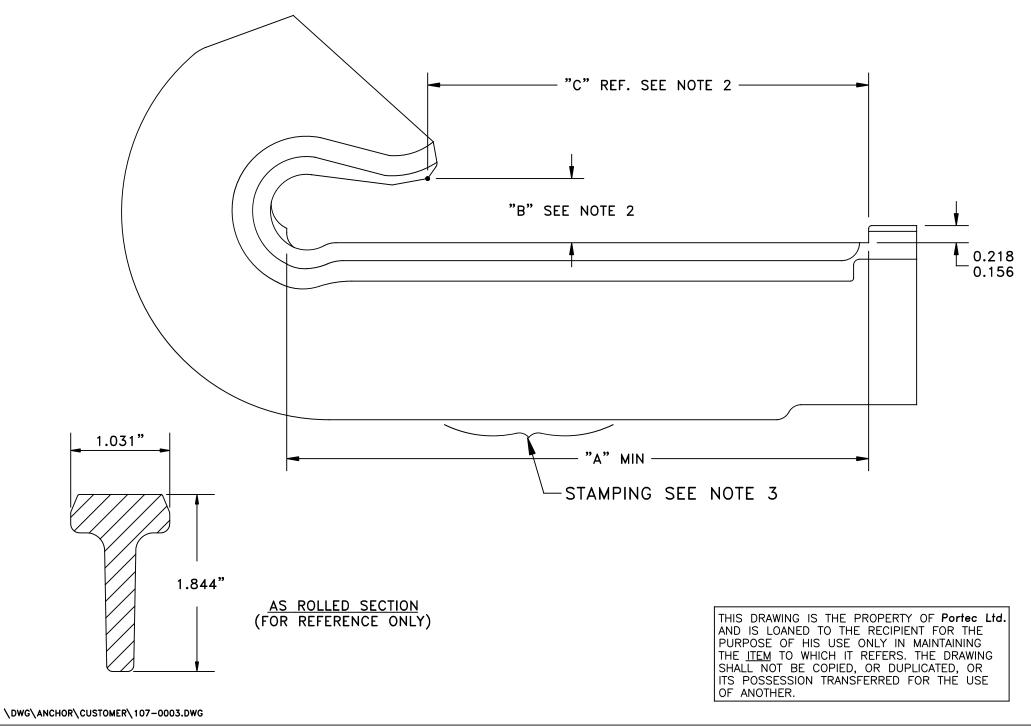
#### 11. Sources of Raw Material & Storage Sites

Crushed Stone Ballast

The materials for railway ballast can be waste mine rock or other suitable quarry rock, some of which has been primary crushed and should conform with present environmental regulations regarding the mineral content and its suitability for railway ballast. The Supplier/Contractor of the rock will provide ONTC with a certificate of compliance respecting any and all governing environmental regulations by the Ministry of the Environment of Ontario or any other governing agency. The Supplier/Contractor is to accept full responsibility for size, condition, and location of the raw material relative to the designated location of the proposed stone pile of such material.

Also, once the contract has been completed the Supplier/Contractor shall ensure that the angle of repose of the stockpile is acceptable to the Ministry of Labour standards.

All material produced under this contract shall be delivered to storage site and stockpiled as directed above by ONTC.


Construction and maintenance of the access road and storage area during the term of the contract shall be the responsibility of the Supplier/Contractor.

All the fine material produced under this contract shall remain the property of ONTC and if necessary, shall be stockpiled at a mutually acceptable location away from the crushed rock stockpiled. **If Respondents are interested in retaining the fines, they must** 

indicate in their Proposal and state whether the unit price for the crushed rock is net of the retention of the fines or identify unit credit for the fines.

| RAIL     |       | DIMEN: | SIONS  |       | PART NUMBERS  |
|----------|-------|--------|--------|-------|---------------|
| SECTION  | "A"   | "B"max | "B"min | "C"   | IMPROVED FAIR |
| 132-6 RE | 6.062 | 0.692  | 0.652  | 4.594 | 600-026XX-01  |
| 130 REHF | 6.062 | 0.723  | 0.683  | 4.594 | 600-038XX-01  |
| 130 PS   | 5.562 | 0.819  | 0.779  | 4.094 | 600-035XX-01  |
| 127 DUD  | 6.312 | 0.630  | 0.590  | 4.844 | 600-046XX-01  |
| 115 RE   | 5.562 | 0.692  | 0.652  | 4.094 | 600-070XX-01  |
| 105 DUD  | 5.562 | 0.546  | 0.506  | 4.050 | 600-094XX-01  |
| 100 RA   | 5.562 | 0.630  | 0.590  | 4.094 | 600-124XX-01  |
| 100 CPRE | 5.437 | 0.645  | 0.605  | 3.969 | 600-130XX-01  |
| 100 RE   | 5.437 | 0.645  | 0.605  | 3.969 | 600-130XX-01  |
| 90 RA    | 5.187 | 0.614  | 0.574  | 3.719 | 600-160XX-01  |

|    | RAIL   |       | DIMEN: | SIONS  |       | PART NUMBERS  |
|----|--------|-------|--------|--------|-------|---------------|
| SE | ECTION | "A"   | "B"max | "B"min | "C"   | IMPROVED FAIR |
| 85 | STD    | 5.062 | 0.630  | 0.590  | 3.594 | 600-178XX-01  |
| 85 | ASCE   | 5.250 | 0.552  | 0.512  | 3.782 | 600-168XX-01  |
| 85 | RA     | 4.937 | 0.677  | 0.637  | 3.469 | 600-196XX-01  |
| 80 | ASCE   | 5.062 | 0.526  | 0.486  | 3.594 | 600-202XX-01  |
| 80 | CNOR   | 5.062 | 0.558  | 0.518  | 3.594 | 600-206XX-01  |
| 80 | RA     | 4.688 | 0.677  | 0.637  | 3.219 | 600-216XX-01  |
| 80 | ABS    | 4.688 | 0.587  | 0.547  | 3.219 | 600-753XX-01  |
| 75 | ASCE   | 4.876 | 0.549  | 0.509  | 3.407 | 600-228XX-01  |
| 75 | OBS    | 4.875 | 0.562  | 0.522  | 3.147 | 600-766XX-01  |
| 65 | OBS    | 4.500 | 0.532  | 0.492  | 2.833 | 600-765XX-01  |



# NOTES:

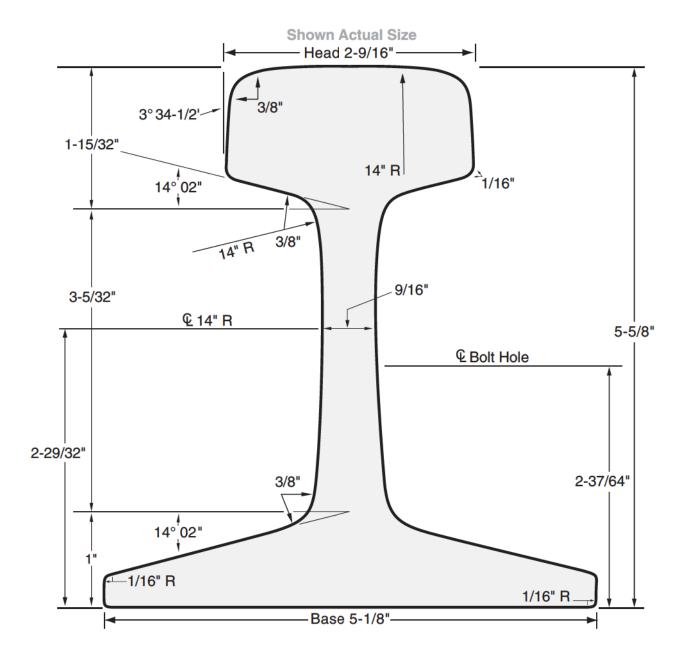
- 1. ALL DIMENSIONS IN INCHES.
- 2. DIMENSIONS "B" AND "C" ARE VERIFIED BY THE USE OF THE RAIL ANCHOR GAUGE.
- 3. RAIL ANCHORS TO BE STAMPED WITH THE RAIL SECTION AND YEAR OF MANUFACTURE.
- 4. PART NUMBERS SHOWN ARE FOR BASE UNIT "XX" IS FOR PACKAGING. CALL FOR OPTIONS

# **SPECIFICATIONS:**

MATERIAL: A.I.S.I. C-1060 STEEL HARDNESS RANGE: 311-401 BRINELL

HOLDING POWER AS PER AREMA SPECIFICATIONS

| 5     | FEB. 07, 2017 | TABLE AND SPECS CHANGED     | SAS |
|-------|---------------|-----------------------------|-----|
| 4     | MAR 24, 2016  | ADDED 65 OBS UPDATED 75 OBS | RGA |
| 3     | JUN 16, 2015  | ADDED RAIL SECTIONS         | RGA |
| 2     | DEC. 4, 2014  | REVISED PART NUMBERS        | RGA |
| 1     | DEC. 3, 2014  | ISSUED                      | RGA |
| ISSUE | DATE          | REVISION                    | BY  |


# **LBFoster**

Rail Technologies

| UNLESS OTHERWISE SPECIFIED TOLERANCES ARE: |          |               | NAME   |              |                              |                            | R              |
|--------------------------------------------|----------|---------------|--------|--------------|------------------------------|----------------------------|----------------|
| DECIMALS ANGLES                            |          |               | IM     | PR(          | DVED                         | FAIR                       | ) <sup>W</sup> |
| .xx± —                                     | ±-       |               |        | <b>\    </b> | $\Lambda$ $\Lambda$ $\Gamma$ |                            |                |
| .xxx± —                                    | FR<br>±- | ACTIONS       |        | <b>→</b>   L | ANCI                         | $\neg \cup \Gamma \supset$ |                |
| DR.                                        | CK.      | AP.           | DATE   | 2014         | DWG. NO                      |                            | ISSUE          |
| RGA                                        | GB       |               | DEC. 4 | , 2014       | 107_                         | 0003                       | <b>L</b>       |
| DO NOT SCALE DRAWING                       |          | SCALE<br>NONE | size B | 10/          | 0003                         | )                          |                |

# 90-lb, ARA-A





Rail Type: 90 RA
Section Number: 9020
Nominal Weight: 90 lbs/yd

Standard Length: 39'

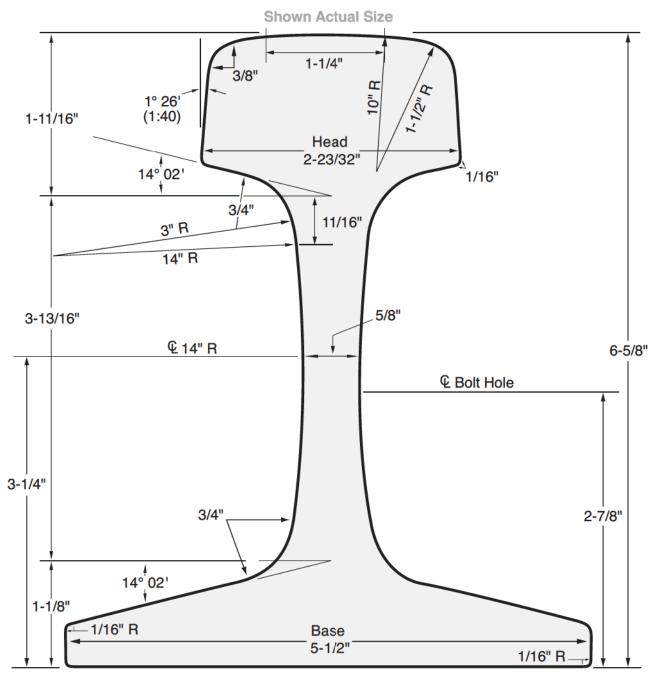
Standard Drilling: 2-11/16" X 5-1/2" with 1-1/8" dia. holes

Joint & Angle Bar Lgth: 24"

Angle Bar Weight: 60 lbs/pr with hardware: 67 lbs/pr Joint Bar Weight: 46 lbs/pr with hardware: 53 lbs/pr

Track Bolt: 7/8" X 5"

Area in<sup>2</sup>: 8.82


Section Modulus in<sup>3</sup>:

Head: 12.6 Base: 15.2 Moment of Inertia in<sup>4</sup>: 38.7

BOLT SIZE MAY VARY DEPENDING ON BAR MANUFACTURE & TYPE OF WASHER USED.

# 115-lb. AREMA





Rail Type: 115 RE Section Number: 11525 Nominal Weight: 115 lbs/yd

Standard Length: 39', 80'

Standard Drilling: 3-1/2" X 6" or 3-1/2" X 6" X 6" with 1-1/8" dia. holes

Joint Bar Length: 24" or 36"

Joint Bar Weight: 4-Hole bars: 68 lbs/pr with hardware: 76 lbs/pr

6-Hole bars: 102 lbs/pr with hardware: 110 lbs/pr

Track Bolt: 1" X 6"

Area in<sup>2</sup>: 11.25

Section Modulus in<sup>3</sup>:

Head: 18.0 Base: 22.0 Moment of Inertia in<sup>4</sup>: 65.6

# **Tie Manufacture Specification – Cross and Switch**

#### **Material and Manufacture**

- 1. Harwood ties shall be made from beech, maple, ash, oak and birch.
- 2. All ties must have a boxed heart. Ties manufactured by halving or quartering large logs are not acceptable.
- 3. All ties shall be made from sound, live, straight timber and shall be free from the following:

- Decay and Rot

- Large Knots

- Unsound Knots

- Splits over 3"

- Shakes

- Slanting Grain

Large or Numerous Holes

4. All Ties shall have bark completely removed.

#### **Dimensions**

1. Track ties shall be eight (8) feet long with the following face dimensions at the narrowest point:

No. 1 Ties Shall be squared with dimension of seven (7) inches thick with nine

(9) inches width of face.

No. 2 Ties Shall be squared with dimensions of six (6) inches thick with eight

(8) inches width of face.

Variations of one-half (1/2) inch over in thickness will be permitted. Ties may have wane one-half (1/2) inch wide on one or both corners of one side only.

2. Length Tolerance

- a) Cross ties plus one (1) inch
- b) Switch ties plus two (2) inches, minus one (1) inch

#### **Machining of Cross Ties**

#### Adzing – Hardwood Ties

1. No adzing required on any tie.

#### **Boring - Harwood Ties**

1. No boring is required for any tie.

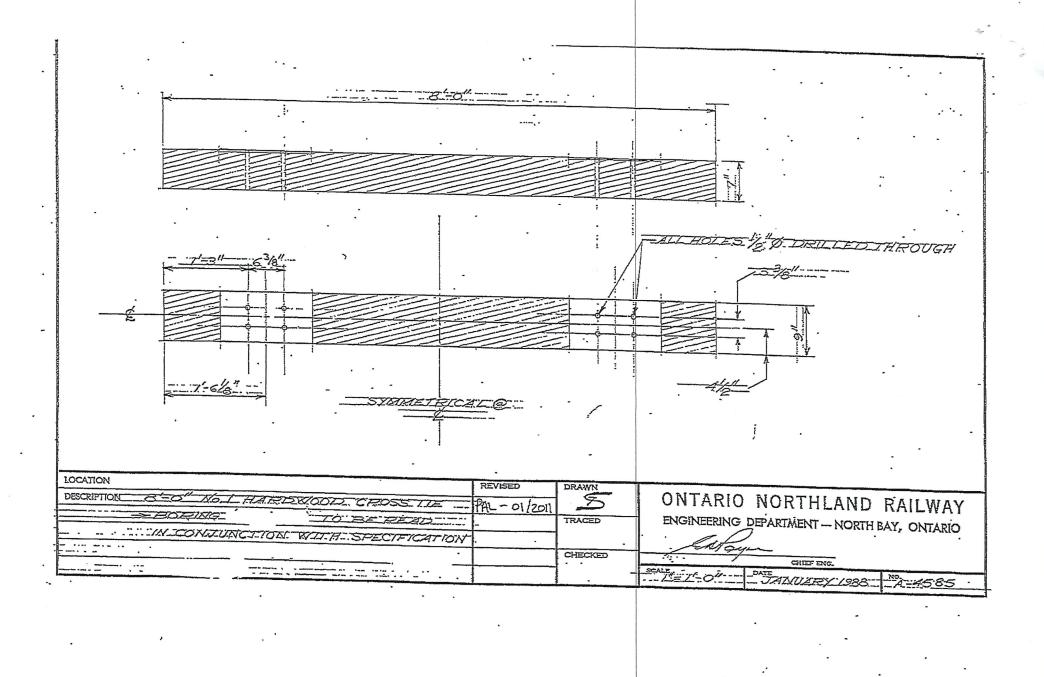
#### **Creosote Treatment**

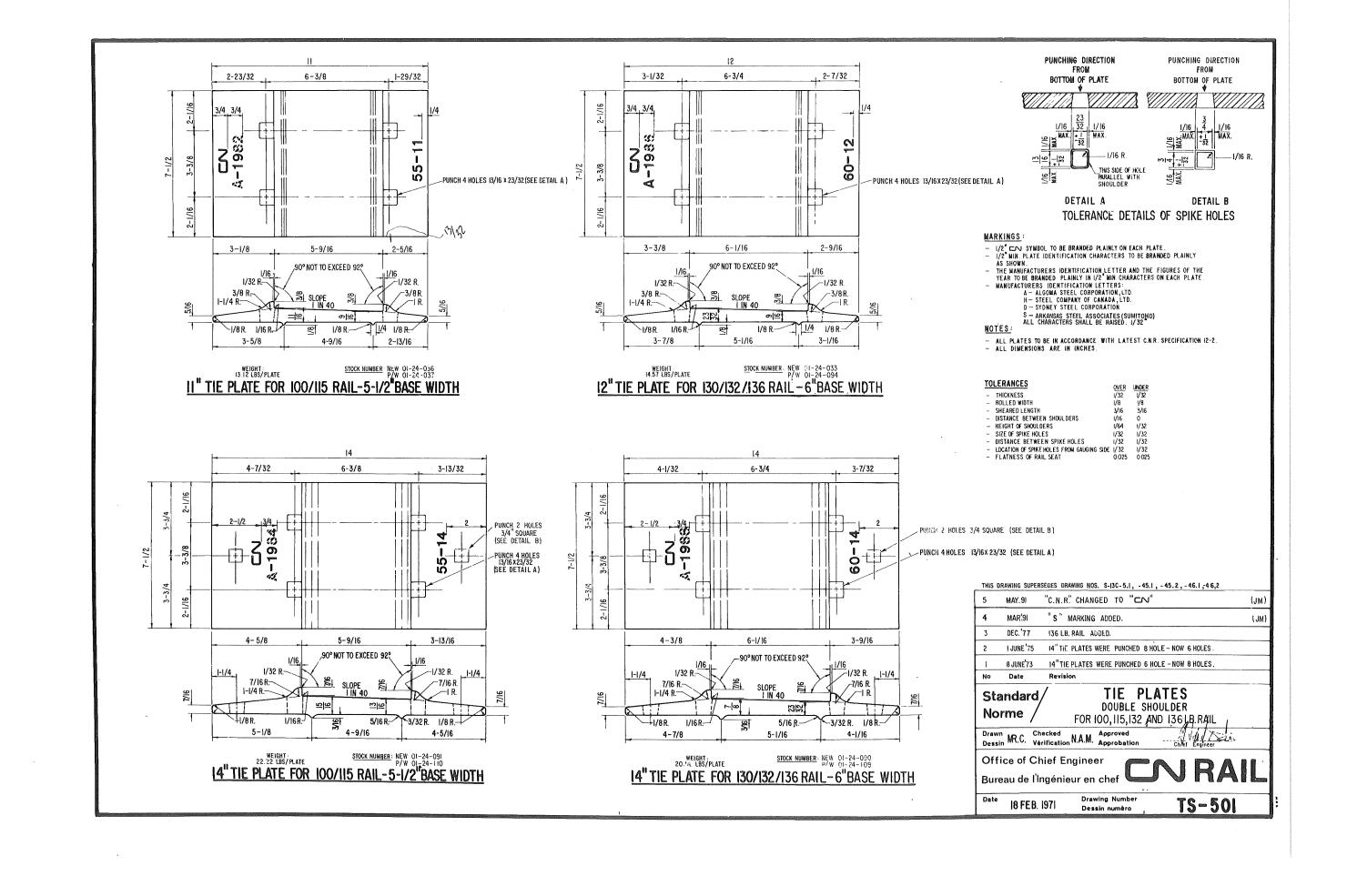
- 1. Seven (7) pounds per cubic foot of 50% creosote and 50% petroleum, or;
- 2. Kopper Creosote Petroleum Solution (Pressure Applications)
- 3. The ONTC will not be accepting ACZA ties (Crossties / Switch Ties) until we determine if the product is acceptable for our use.

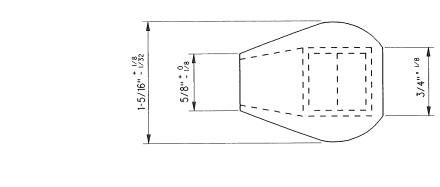
# **Trimming**

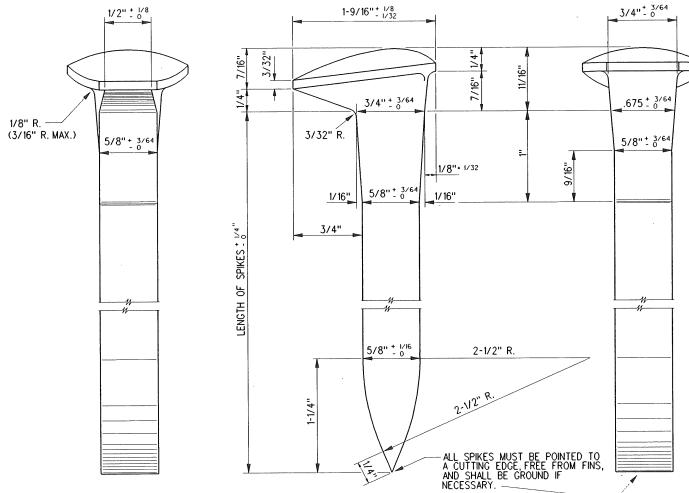
1. Trimmed ties shall be cleanly sawed at <u>both</u> ends to the specified length as they pass through the boring and adzing machine.

## **Branding**

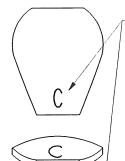

1. Branding of the ends of ties as the pass through the machine shall be with letters, figures, or symbols to indicate the following:


Year: 2024 Railway: O.N.R.


2. Letter height shall be approximately 1 ½ inches. Dies used for branding shall have a cutting edge of 1/8 inches wide shall indent the wood at least ¼ inch deep


Ontario Northland Railway
Office of the Director Rail Infrastructure

September 25, 2023

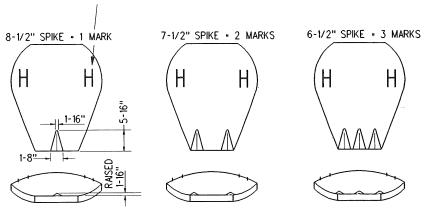









| ITEM           | LENGTH | STOCK     | WEIGHT      |           |
|----------------|--------|-----------|-------------|-----------|
|                | LENGIN | NEW       | PARTLY WORN | WEIGHT    |
| TRACK SPIKE    | 5-1/2  | 01-03-012 | 01-03-013   | 0.750 LB. |
| TRACK SPIKE    | 6      | 01-41-014 | 01-41-015   | 0.813 LB. |
| SHIMMING SPIKE | 6-1/2  | 01-03-018 | 01-03-019   | 0.875 LB. |
| SHIMMING SPIKE | 7-1/2  | 01-03-021 | 01-03-022   | 1.000 LB. |
| SHIMMING SPIKE | 8-1/2  | 01-03-024 | 01-03-025   | 1.125 LB. |




THE MANUFACTURER'S IDENTIFICATION LETTER MUST APPEAR CLEARLY ON ALL SPIKES IN POSITION SHOWN.

LETTERS TO BE 1/4 " HIGH AND RAISED 1/32 ".

- C DOMINION STEEL & COAL CORP. LTD. E - PREMIER STEEL PRODUCTS LTD.
- H STEEL COMPANY OF CANADA LTD. V - PACIFIC BOLT MAN-WESTERN CAN. STEEL.
- NORTRAK LTD.

# IDENTIFICATION MARKINGS FOR TRACK SPIKES



# IDENTIFICATION MARKINGS FOR SHIMMING SPIKES

## NOTES

- ALL SPIKES TO BE MANUFACTURED IN ACCORDANCE WITH SPECIFICATION 12-6 LATEST DATE.

THIS DRAWING SUPERSEDES DRAWING NO. S10C-8.1 DATED NOV. 15, 1962 & S10C-8.2 DATED FEB. 1, 1962

| \$ 21          | OC-8.2 DAT      | ED FEB. 1, 1962                 |                                   |                           |     |
|----------------|-----------------|---------------------------------|-----------------------------------|---------------------------|-----|
| 4              | JUNE'91         | "DISPONIBLE EN                  | FRANCAIS" ADD                     | DED.                      |     |
| 3              | APR.'90         | V CHANGED TO                    | PACIFIC BOLT                      | MAN-WESTERN CAN. STE      | EL. |
| 2              | JAN.'89         | NOTES REVISED                   | ), MARKING UPD                    | ATED.                     |     |
| 1              | JAN.'74         | TOLERANCES /                    | LTERED.                           |                           |     |
| No.            | Date            | Révision                        |                                   |                           |     |
|                | andard<br>rme / | /                               | TRACK & S<br>SPIKI<br>FOR STANDAR | ES                        |     |
| Drawi<br>Dessi | MD ( · ·        | ecked G.W.M.                    | Approved<br>Approbation           | LL Gray<br>Chief Engineer |     |
|                |                 | hief Engineer<br>l'Ingenieur en | Chef                              |                           |     |
| Date           | SEPT.'73        | 3                               | Plan Number<br>Dessin numera      | TS - 1325                 | 5   |

DISPONIBLE EN FRANCAIS

FILE: 1325.ts